Программа Для Работы С Координатной Плоскостью

Программа Для Работы С Координатной Плоскостью

Рисунки на координатной плоскости с помощью графиков линейных функций. Работа, представленнаяна фестиваль. Раздел: Математика. Учебный год: 2. 01. Автор: Богомолов Эдуард Алексеевич, 8- й класс.

Руководители: Материалы работы: 6. МБ). Описание работы: В работе предлагаются задания- рисунки с использованием графиков линейной функции. Предлагаемые упражнения интересны и занимательны.

Их можно использовать в качестве самостоятельных работ и домашних заданий. Я решил разработать приложение, которое может использовать учитель на уроках алгебры. Для создания приложения была выбрана программа Visual Basic. Тренажер предназначен для изучения и отработки навыков работы с координатной плоскостью и линейной функцией, тренировки и контроля школьников. Facebook. Вконтакте. Одноклассники. Мой мир. Google+* Для распаковки архива вы можете воспользоваться бесплатной программой 7- Zip или любой другой программой, поддерживающей архивы 7z и Zip.

Координатная плоскость. Как известно, на каждом доме указаны его номер и название улицы – это адрес дома. На билете в любой зрительный зал написаны номер ряда и номер места – это адрес кресла. Для определения положения точки на глобусе надо знать долготу и широту – это адрес географической точки (географические координаты).

Каждый объект имеет свой упорядоченный адрес (координаты). Таким образом, адрес или координаты – это числовое или буквенное обозначение того места, где находится объект. Математиками была разработана модель, которая, в частности, позволяет описать любой зрительный зал (расположение мест в зале).

Такая модель получила название координатная плоскость. Чтобы из обычной плоскости получить координатную, необходимо начертить две перпендикулярные прямые, отмечая стрелками направления «вправо» и «вверх» (см. На прямые наносят деления, как на линейку, причем точка пересечения прямых – это нулевая отметка для обеих шкал. Горизонтальную прямую обозначают  и называют осью абсцисс, вертикальную прямую обозначают  и называют осью ординат. Две перпендикулярные оси  и  с разметкой называют прямоугольной, или декартовой, системой координат. Название «декартова» происходит от фамилии французского философа и математика Рене Декарта, который ее придумал.

Программа Для Работы С Координатной Плоскостью

Рис. Координатная плоскость. Для любой точки на координатной плоскости можно указать два числа (координаты). На рисунке 2 показана точка  на координатной плоскости. Для получения координат этой точки необходимо через точку провести две прямые, параллельные координатным осям (обозначены пунктирной линией). Пересечение одной из прямых с осью абсцисс – это координата  точки , пересечение другой прямой с осью ординат – это координата  точки . Сначала указывают координату , потом .

Программа "Координатная плоскость". Предназначане для отработки навыков работы с координатной плоскостью. Включает два . Рабочая программа элективного курса по математике в 6 классе. В основе работы курса лежит принцип добровольности. Этот урок посвящен изучению координатной плоскости. Мы рассмотрим, для чего используются координатные плоскости, разберем основные . На изучение данной темы программой отводится 6 часов, в результате. Способствовать формированию навыков работы на координатной плоскости.

Для создания приложения была выбрана программа Visual Basic. Тренажер предназначен для изучения и отработки навыков работы с координатной . Программа Advanced Grapher поддерживает построение графиков функций. Координатная плоскость - программа, которая наглядно. Максимальное количество балов задaётся в начале работы программы. Математика 6 класс. Координатная плоскость. Задания с проверкой ответов.

Точка  имеет координаты . Аналогично находим координаты точки , она имеет координаты  (см. Определение координат точек на координатной плоскости. Можно сделать все и в обратном порядке. То есть изобразить точку на плоскости по известным координатам. Пример. 1. Построить точки по заданным координатам , Для построения точки  необходимо отложить число 2 на оси  и провести перпендикулярную прямую; на оси  откладываем число 5 и проводим перпендикулярную оси  прямую (см. На пересечении перпендикуляров получим точку  с координатами .

Программа Для Работы С Координатной Плоскостью

Для построения точки  необходимо отложить на оси  число 3 и провести перпендикулярную оси   прямую; на оси  откладываем число (–1) и проводим перпендикулярную оси  прямую. На пересечении перпендикуляров получим точку  с координатами . Построение точек на координатной плоскости по заданным координатам. Построить точки по заданным координатам , Для построения точки  необходимо отложить число 3 на оси . Координата  равна нулю, следовательно, точка  лежит на оси  (см. Ninja World Читы Баги Секреты. Для построения точки  необходимо отложить число 2 на оси . Координата  равна нулю, следовательно, точка  лежит на оси  (см.

Построение точек на координатной плоскости по заданным координатам. Таким образом, если нулю равна координата , то точка лежит на оси , а если нулю равна координата , то точка лежит на оси . Выписать координаты точек , , ,  (см.

Изобразить точки , , , , . Рис. Иллюстрация к задаче. Решение. 1. Для определения координат точки  проведем через нее две прямые, параллельные координатным осям. Пересечение одной из прямых с осью абсцисс – это координата , пересечение другой прямой с осью ординат – это координата . Следовательно, точка  имеет координаты  (см. Для определения координат точки  проведем через нее две прямые, параллельные координатным осям. Пересечение одной из прямых с осью абсцисс – это координата , пересечение другой прямой с осью ординат – это координата .

Следовательно, точка  имеет координаты . Точка  находится на оси , поэтому координата  равна нулю. Координата  этой точки равна (–2). Следовательно, точка  имеет координаты .

Точка  находится на оси , поэтому координата  равна нулю. Координата  этой точки равна –5. Следовательно, точка  имеет координаты . Рис. Иллюстрация к задаче. Для построения точки  откладываем число (–3) на оси  и проводим перпендикулярную прямую; на оси  откладываем число (–2) и проводим перпендикулярную оси  прямую (см. На пересечении перпендикуляров получим точку  с координатами .

Координата  точки  равна нулю, поэтому эта точка лежит на оси . Отложим на оси  число 5 и получим точку  с координатами .

Для построения точки  откладываем число 3 на оси  и проводим перпендикулярную оси  прямую; на оси  откладываем число 4 и проводим перпендикулярную оси  прямую. На пересечении перпендикуляров получим точку  с координатами . Координата  точки  равна нулю, поэтому эта точка лежит на оси . Отложим на оси  число (–4) и получим точку  с координатами . Две координаты точки  равны нулю, следовательно, эта точка лежит на оси  и на оси , то есть является точкой пересечения двух осей (начало координат). Рис. Иллюстрация к задаче. Координатные оси разбивают координатную плоскость на четыре части – четверти.

Порядковые номера четвертей принято считать  против часовой стрелки (см. Нумерация четвертей координатной плоскости. Если точка имеет положительную координату  и положительную координату , то она лежит в первой четверти. Если точка имеет отрицательную координату  и положительную координату , то она лежит во второй четверти. Если точка имеет отрицательную координату  и отрицательную координату , то она лежит в третьей четверти. Если точка имеет положительную координату  и отрицательную координату , то она лежит в четвертой четверти. Например, у точки  координата  положительная, а координата  отрицательная, следовательно, эта точка находится в четвертой четверти.

Другие системы координат. Чтобы присвоить точке числовой «адрес» (координаты), используются и другие системы координат. Причины использования различных систем координат: 1. Размерность. На этом уроке мы рассматривали прямоугольную систему координат на плоскости. Размерность такого пространства равна 2, то есть точка задавалась двумя координатами. Однако пространство может иметь другую размерность, например равную единице, когда точка может менять свое положение только в одном направлении (двигаться вперед- назад или вверх- вниз).

В качестве примера можно привести движение автомобиля по ровной дороге или движение лифта. Для указания местоположения точки нужна только одна координата. Эта координата будет означать то расстояние, которое проехал автомобиль (см. Координата в данном случае – это расстояние, на которое отъехал автомобиль. Рис. Координата в данном случае – этаж, на котором находится лифт.

В математике такая система координат представлена числовой или координатной осью. Чтобы из любой прямой получить координатную ось, необходимо отметить на прямой начало отсчета, масштаб и направление отсчета (см. По одной координате можно однозначно понять, где находится точка.

Рис. Координатная ось. Размерность пространства может быть равной трем (пространство, в котором мы живем, имеет три измерения). Для указания места положения точки в этом случае нужны три координаты. Например, если в высотном здании на каждом этаже находится кинотеатр, то для указания места в билете должны быть указаны три координаты – этаж, ряд, номер кресла. В математике такая система координат строится точно так же, как на плоскости, только добавляется третья ось  (см. Декартова система координат в пространстве.

Другой метод задания координат точки (использование полярной системы координат на плоскости). Проводится ось , а для точки  указывается расстояние от нуля до нее и угол, который образует отрезок  с осью . Эти два числа и будут являться координатами точки  (см.

Навигация

Программа Для Работы С Координатной Плоскостью
© 2017